PENERAPAN METODE K-MEANS CLUSTERING PADA PENJUALAN BARANG DI SPORTS STATION

نویسندگان

چکیده

Penjualan adalah kegiatan menjual barang dan jasa, apabila manajemen penjualan pada perusahaan kurang baik maka akan mempengaruhi keuntungan. Sehingga, membuat tidak mencapai tujuannya. Jenis usaha yang ada di indonesia sangat beragam, salah satunya Sports Station merupakan retail perlengkapan olahraga. sering mengalami permasalahan dengan ketidakakuratan terstrukturnya data penjualan. berdampak dalam kesulitan mengelompokkan produk. Maka, diperlukan sistem dapat menentukan pola atau trend Algoritma K-Means digunakan untuk produk berdasarkan serupa, yaitu membagi menjadi dua klaster dikategorikan sebagai laris laris. Tahapan diterapkan retrieve, mengambil dataset, kemudian menggunakan Clustering memodelkan dataset Cluster distance performance mengevaluasi hasil pengelompokan. Validasi klasterisasi dilakukan Davies Bouldin Index (DBI). ini menghasilkan pengelompokkan 2 cluster 0 nilai 995 sebanyak 121 kategori 1 327 2.279 Serta DBI paling mendekati K 0,10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penerapan teknik web scraping pada mesin pencari artikel ilmiah

Search engines are a combination of hardware and computer software supplied by a particular company through the website which has been determined. Search engines collect information from the web through bots or web crawlers that crawls the web periodically. The process of retrieval of information from existing websites is called "web scraping." Web scraping is a technique of extracting informat...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

Adaptive K-Means Clustering

Clustering is used to organize data for efficient retrieval. One of the problems in clustering is the identification of clusters in given data. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent...

متن کامل

Constrained K-Means Clustering

We consider practical methods for adding constraints to the K-Means clustering algorithm in order to avoid local solutions with empty clusters or clusters having very few points. We often observe this phenomena when applying K-Means to datasets where the number of dimensions is n 10 and the number of desired clusters is k 20. We propose explicitly adding k constraints to the underlying clusteri...

متن کامل

Subspace K-means clustering.

To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E-link: Jurnal Teknik Elektro dan Informatika

سال: 2023

ISSN: ['1858-2109', '2656-5676']

DOI: https://doi.org/10.30587/e-link.v18i1.5339